Hey there,

Following pls find my worked solution:

<After>

A |---------|

R |---------|<--70-->|

<process1>

Since A had (2/3) of his share left, split this portion of A into 2 equal parts (2p). Working backwards, A would have 1p added to his 2p, and R had 1p taken from his, leaving (1p + 70) as shown below <before> model.

<before>

A |----|----|----|

R |----|<--70-->|

<process2>

A gave (1/5) of his share. Using common multiple method, Split his 3p into 15 equal units (u), i.e. 1p = 3u. R would also have his 1p split into 5u.

A = 15u; R = 5u + 70;

Since A gave (1/5) of this (or 3u) to R, A would be left with 12u. And R would have 3u more to his share as shown below.

<After>

A: 12u

R: 8u + 70

Given that R had 10 more than A in the end, we have ...

R - A = 10

8u + 70 - 12u = 10

12u - 8u --> 70 - 10

4u --> 60

1u --> 15

A (at first) = 15u --> 15 × 15 = **225**

==========

Do let me know again if this is different from your Answerkey or if theres further clarification.

Cheers,

Edward