Welcome to Test-paper.info
Tuesday, December 12 2017 @ 07:46 PM CST
 Select a Forum » General Chat » Primary 1 Matters » Primary 2 Matters » Primary 3 Matters » Primary 4 Matters » Primary 5 Matters » Primary 6 Matters » Question, Feedback and Comments » Education Classified
 Forum Index >  Test Paper Related >  Primary 6 Matters P6 Maths
 | Printable Version
 By: sundarshoba (offline)  Saturday, April 25 2015 @ 04:20 AM CDT (Read 1347 times)
sundarshoba

Please assist to solve Q14 of the attachment, Thanks

Chatty

Registered: 12/31/06
Posts: 53

 By: echeewh (offline)  Saturday, April 25 2015 @ 02:34 PM CDT
echeewh

Hey <sundarshoba>,

Refer to attached question

Following is my worked solution:

Q14.

Number of small squares is the sum of (n + 1) consecutive numbers from 1, where n is the pattern number.

(a)
Pattern 4 = sum of 5 consecutive numbers from 1,

1 + 2 + 3 + 4 + 5 = 15

(b)
Pattern 99 = sum of 100 consecutive numbers from 1,

1 + 2 + 3 + . . . + 98 + 99 + 100

= (100 × 101) ÷ 2 = 5050

(Note: can also use <number pairing> method to give the same answer)

======

Trust this helps.

Do let me know again if there's further clarification.

Cheers,
Edward

Active Member

Registered: 04/21/11
Posts: 627

 All times are CST. The time is now 07:46 pm.
 Normal Topic Locked Topic Sticky Topic
 New Post Sticky Topic w/ New Post Locked Topic w/ New Post
 View Anonymous Posts Able to Post HTML Allowed Censored Content